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equation (13) in Stangeby and Allen’s (1970) paper. As before, we choose C to be a 
closed Mach line C, (so that qn = - a  and aqn/as = 0 on C,) and integrate around 
C,, yielding 

In  general, the right-hand side of equation (6)  is positive, so that 

and aqn/an + CO on at least some portion of C,. The analysis of Stangeby and Allen 
(1970) may now be applied to show that aq,/an -+ CO everywhere on Chf. 

Hence, the plasma-sheath boundary in a plasma with an anisotropic ion velocity 
distribution is a Mach line, i.e. the normal component of the ion velocity is equal to 
(k( Te+ Ti)/M)l’z irrespective of ionization or collision effects in the plasma. 

We are grateful to Dr J. E. Allen for helpful discussions. 
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A possible mechanism for instability in a perpendicular 
collisionless shock wave 

Abstract. Bernstein waves which propagate in a direction opposite to the 
current flow in a perpendicular collisionless shock can have negative energy. 
These negative-energy waves can give rise to instability either by coming into 
resonance with the ion acoustic wave or by dissipating their energy through ion 
Landau damping. In the second case the instability can take place for Ti 2 T,. 

There has been much speculation about the nature of the instability which might 
occur within a collisionless shock wave propagating perpendicular to a strong magnetic 
field. Sagdeev (1966) has suggested an ion wave instability and this idea has recently 
been refined by Krall and Book (1969). Krall and Book considered waves propagating 
perpendicular to the magnetic field Bo and the shock front, which were driven 
unstable by the perpendicular drifts due to the gradients of magnetic field and density 
at the front. However, Gary and Sanderson (1970) have pointed out that there is a 
third source of drift, due to the voltage jump across the shock front. For low or 
moderate values of Pe(Pe = n o ~ T e / ( B o 2 / 2 p 0 ) )  the drift due to the voltage jump is the 
dominant one (Gary and Sanderson 1970). 
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The situation we wish to analyse is therefore the following. We assume the shock 
wave propagates in the x direction and take the x axis as the direction of the zero-order 
magnetic field. There is then a zero-order electric field in the x direction. The  
crucial assumption is that, since the time for the shock front to pass is much less than 
the ion Larmor period and much greater than the corresponding electron period, 
only the electrons undergo an E ,  x Bo drift. There is therefore a zero-order current 
flowing in the y direction. 

Assuming the E ,  x Bo drift to be the dominant one we neglect the gradients in 
no and Bo and consider electrostatic waves propagating at right angles to both Bo 
and the shock front, i.e. perturbations of the order of exp i(ky - ut). We further 
assume that w $ wci where wci is the ion cyclotron frequency so that the ions are 
taken to be unmagnetized. With these assumptions one can easily obtain the disper- 
sion relation : 

m e-“$) 
x ( - l + e ~ a I o ( A ) + 2 ( w - k v o ) 2  , 2 = 1 ( w  - kvo)2 - n2wc,2 ) = O  (1) 

where wpi is the ion plasma frequency, vT, the ion thermal speed (KT,/wz~)’”, 
ti = w/2/2  kvTi and 2 the Fried-Conte (1961) function, and wpe, wee( = lelBo/m,) 
and vo are respectively the electron plasma frequency, the electron cyclotron fre- 
quency and the electron drift velocity -E,/B,. The quantity A is given by 

and I, is the nth-order modified Bessel function of the first kind. 
wpi the dispersion equation (1) becomes the equation for Bernstein (1958) 

waves in the presence of a Hall current. Krall and Book (1969) neglected these waves 
in their analysis but Gary and Sanderson (1970) have shown that they can have a 
profound effect on the stability of the system. The  reason the Bernstein waves (at 
harmonics of the electron cyclotron frequency) are important, and this was not 
pointed out by Gary and Sanderson, is that in the presence of a Hall current they can 
have negative energy. We can see this quite simply from their dispersion relation. 
The  small signal energy density of an electrostatic wave is given by 

If w 

(3) 
a 

d = &ojE12- { W E l ( W ,  k)}<,’, aw 
where cl( w ,  k) is the longitudinal dielectric constant and is given by 

From equations (3) and (4) it follows that the condition for d 0 is 

0 < w < kv,. (5) 
We now return to the general dispersion equation given by equation (1). Owing 

to the negative energy property of the Bernstein waves there will be an instability 
analogous to the two-stream instability when an ion wave becomes degenerate with a 
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Bernstein harmonic (i.e. when two branches merge at some critical point w,, k ,  in the 
dispersion diagram). We can demonstrate this instability with the aid of a method 
much used in the theory of travelling wave tubes (Pierce 1950). For Ti 4 T,, 
equation (3) becomes 

2e-111,(X) 
1----- { - 1 + e-I11,(h) + ( w  - kao)2 2 = ( w  - ka,)2 - n2wc2 ) = 0 .  ( 6 )  

W 2  k2VTe2 

The instability will only occur when one of the Bernstein harmonics ‘intersects’ the 
ion wave. This will be for large values of k where we can approximate the infinite 
sum by one harmonic provided 

and we can therefore write equation ( 6 )  in the form 
w - k v ,  II knw,,  (7) 

(8) (w2-k2cs2)((w -kvo)2  -n2wc2)  = 2 ~ ~ ( ~ - k v , ) ~ e - ~ I , ( h )  

where we have used the fact that w,,/kaTe 4 1. Under these conditions the right- 
hand side of equation (8) is much less than unity and we can use a perturbation 
technique to obtain a solution. Instability results from a resonance between two 
branches of the dispersion relation. Since it is the slow Bernstein mode which 
carries negative energy the resonance condition is the following: 

kc, N ko, - nw,, (9) 
where we take vo > 0. We now look for solutions 

and obtain 
w = kv,  -no,, + 60 

where we have used the result 
eh 

I,@) N - for h $ 1. 
(ZTX)1’2 

The right-hand side of equation (11) is negative definite and so we have instability. 
The  growth rate is 

n1/2 me 114 

(12) 
Y -=- 

wce ( s i ~ ) ~ ~ ~  (G) 
and the values of K at which there is instability are given from equation (9). They are 

nvTe kp, = - 
(vo - cs) 

where p ,  is the electron Larmor radius. 
The  condition for the validity of the solution is that 

Gary and Sanderson (1970) obtained a numerical solution for this case. However, 
there is second instability mechanism which was not considered by Gary and Sanderson 
(1970). This can only be understood from the point of view of a negative-energy wave. 
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Whenever a system propagates a negative-energy wave instability results when 
there is a sink to which the wave can give up its energy. In  the above example the 
sink was provided by a positive-energy ion wave. However, for a plasma with hot ions 
there is an alternative sink. Those ions whose thermal velocities are of the order of 
the phase velocity of the negative energy wave can absorb its energy and enable it to 
grow. Thus, for a negative-energy wave, ‘Landau damping’ due to another species 
produces instability! T o  demonstrate this effect we again return to equation (11). 
First, we would expect the most marked effect for frequencies such that 

w N k V T t .  (15) 
For T, > Ti such frequencies are well separated from the ion-acoustic frequencies 
and so there would be no instability of the type considered above. We again assume 
that a particular harmonic in the infinite summation is dominant. The  dispersion 
relation can now be written: 

e-IZI,(A). a p e 2  
= 2 ( ~  - k v o ) 2  - 

k2vTa2 - -  
Looking for solutions which satisfy 

w = 2 / 2 k V T ,  

we can substitute this into the first bracket, on the left-hand side bf equation (16), to 
obtain 

- n2w,,2} 

e - IZ1 .(A). O p e 2  = 2 ( w  - kvo)2 - 
k2VTe2 

We can now see that the ions are behaving as a medium of complex dielectric constant 
(Birdsall et al. 1953): n 

WPi4 1 - - e - l ( l -  i d / 2 ) .  
k 2 V T , 2  

For F22v,,2/wp,2 < 1, approximating the right-hand side as before and taking Ti < T,, 
we can simplify equation (17) even more: 

The  solution of equation (18) is 
e-1 (1 + W 2 )  Ti 1 

w = kv, k nw,, (1- - 
(ZT)’/’ (1 +T)  T, kp, 

We see that the slow Bernstein wave (Le. the negative-energy wave) is growing in 
time. For the validity of the solution (19) we require 

and 
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We have considered this instability when its growth rate is a maximum (i.e. when 
the phase velocity of the slow Bernstein wave is of the order of the ion thermal 
velocity). For Ti < T, the range of k values for which a given harmonic becomes 
unstable is small. For a typical value uo/vTe = 0.1 (Paul et al. 1965) these k values 
can be obtained from equation (20): 

kp, 2: 1272. (22) 

For T,/T, = 5 the growth rates of each harmonic can be obtained from equation (19) 
giving 

- 0.008 (23 1 r 
Wee 
_ -  

independent of n. 
This instability does not require Ti to be small compared with T, since it depends 

only on resonant ions. As Ti increases the range of unstable k values increases (for 
each harmonic). Returning to equation (17) we can obtain the growth rate due to 
this instability for arbitrary values of Ti: 

_ -  Y e'nTiId2Tekpe - 
wCe 7~ + (( T,/T,)el - 1}2* 

For Ti = T,, kp, = 15 and v,/vTe = 0.1 we have 

-- - 0.02. 
Wce 

The two significant points about this instability are first that it results in energy 
being absorbed by the ions (i.e. the power is positive), and secondly that it can take 
place for Ti x T,. For large values of Te/Ti it would probably be swamped by the 
faster growing instability described in the first part of this paper. 

In  the above we have considered two instability mechanisms which may occur 
within a perpendicular collisionless shock. Both mechanisms are due to the negative 
energy character of the Bernstein modes in the presence of an E ,  x Bo drift on the 
electrons. The first results from a resonance between the slow Bernstein wave and 
the ion acoustic wave and the second is due to the Landau damping of the ions. The  
resonant ions absorb energy from the slow Bernstein wave thus causing it to grow, i.e. 
the energy from the instability goes directly to the ions. This second instability can 
occur for arbitrary values of Ti/Te and in particular for Ti x T,. A fuller account of 
this work in which the gradients in density and magnetic field are included will be 
published later. In  fact, similar results are obtained but the density gradient results 
in there being a maximum value of k above which there is no instability. 

I would like to thank Drs S. P. Gary and J. J. Sanderson for making the results 
of their computations available to me before publication. I am also grateful to Dr  S. P. 
Gary for valuable discussions. 

U.K.A.E.A. Research Group, 
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Berks., England. 

C. N. LASHMORE-DAVIES 
10th July 1970 
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The effects of spatial coherence on intensity 
fluctuation distributions of Gaussian light 

Abstract. The effects of finite sizes of source and detector on observed intensity 
fluctuations of Gaussian light are investigated both theoretically and experi- 
mentally. The theory allows a measurement of source size to be made using a 
single receiving aperture, rather than two as used in the Hanbury-Brown Twiss 
intensity interferometer. 

I n  much recent work in statistical optics, temporal coherence properties have been 
investigated. Theoretical and experimental results have been obtained in which the 
effects of spatial coherence have been considered to be negligibly small due to the use 
of essentially point sources and detectors. A recent bibliography is given by Jakeman 
and Pike (1969). In  real experiments, of course, the order of size of a ‘point’ source or 
detector before spatial coherence effects become measurable is of interest. Conversely, 
effects due to loss of spatial correlation can be used, as in the Michelson stellar 
interferometer, or the Hanbury-Brown Twiss intensity interferometer, to provide 
information about the source. 

In  recently reported quantitative work from this laboratory using intensity 
fluctuation spectroscopy of laser scattering to determine diffusion constants of protein 
molecules (Foord et al. 1970) it was necessary to calculate the effects of finite 
aperture sizes on the measurements in order to interpret fully the results obtained. 
This calculation together with supporting experimental data are presented in this 
paper. The  results are applicable to the general problem of spatial integration over a 
detector surface of light from a quasimonochromatic Gaussian source. We prove this 
first below by showing that the mutual coherence of the scattered laser field between 
two points on the detector surface is identical to that arising from such a source. We 
then calculate the second moment of the intensity fluctuation distribution measured by 
a single detector, whose area is not small compared with a ‘coherence area’. The  
result, which involves simply a double integral of the square of the Van Cittert- 
Zernicke mutual coherence function over the detector surface, can be thought of as 
providing the theory of a single-aperture intensity interferometer. 

Consider the electric field at the point r due to the scattering of laser light of 
wave vector k, from particles situated at the point r j  and moving with velocity nj. 
Let a fraction n,6w of the particles give rise to frequency shifts at r between w and 
w + 6w. The formula 

0 = wg -K , (w)  . vi (1) 


